The Windows Disk Management 3






Partition Styles


Partition styles, also sometimes called partition schemes, is a term that refers to the particular underlying structure of the disk layout and how the partitioning is actually arranged, what the capabilities are, and also what the limitations are. To boot Windows, the BIOS implementations in x86-based and x64-based computers require a basic disk that must contain at least one master boot record (MBR) partition marked as active where information about the Windows operating system (but not necessarily the entire operating system installation) and where information about the partitions on the disk are stored. This information is placed in separate places, and these two places may be located in separate partitions or in a single partition. All other physical disk storage can be set up as various combinations of the two available partition styles, described in the following sections.

Dynamic disks follow slightly different usage scenarios, as previously outlined, and the way they utilize the two partition styles is affected by that usage. Because dynamic disks are not generally used to contain system boot volumes, this discussion is simplified to exclude special-case scenarios.


Master Boot Record


All x86-based and x64-based computers running Windows can use the partition style known as master boot record (MBR). The MBR partition style contains a partition table that describes where the partitions are located on the disk. Because MBR is the only partition style available on x86-based computers prior to Windows Server 2003 with Service Pack 1 (SP1), you do not need to choose this style. It is used automatically. You can create up to four partitions on a basic disk using the MBR partition scheme: either four primary partitions, or three primary and one extended. The extended partition can contain one or more logical drives. The following figure illustrates an example layout of three primary partitions and one extended partition on a basic disk using MBR. The extended partition contains four extended logical drives within it. The extended partition may or may not be located at the end of the disk, but it is always a single contiguous space for logical drives 1-n.


The MBR layout with three primary partitions and one extended partition on a basic disk


Each partition, whether primary or extended, can be formatted to be a Windows volume, with a one-to-one correlation of volume-to-partition. In other words, a single partition cannot contain more than a single volume. In this example, there would be a total of seven volumes available to Windows for file storage. An unformatted partition is not available for file storage in Windows. The dynamic disk MBR layout looks very similar to the basic disk MBR layout, except that only one primary partition is allowed (referred to as the LDM partition), no extended partitioning is allowed, and there is a hidden partition at the end of the disk for the LDM database.


GUID Partition Table


Systems running Windows Server 2003 with SP1 and later can use a partition style known as the globally unique identifier (GUID) partition table (GPT) in addition to the MBR partition style. A basic disk using the GPT partition style can have up to 128 primary partitions, while dynamic disks will have a single LDM partition as with MBR partitioning. Because basic disks using GPT partitioning do not limit you to four partitions, you do not need to create extended partitions or logical drives. The GPT partition style also has the following properties:


  1. Allows partitions larger than 2 terabytes.
  2. Added reliability from replication and cyclic redundancy check (CRC) protection of the partition table.
  3. Support for additional partition type GUIDs defined by original equipment manufacturers (OEMs), independent software vendors (ISVs), and other operating systems.


The GPT partitioning layout for a basic disk is illustrated in the following figure.


The GPT partitioning layout for a basic disk


The protective MBR area exists on a GPT partition layout for backward compatibility with disk management utilities that operate on MBR. The GPT header defines the range of logical block addresses that are usable by partition entries. The GPT header also defines its location on the disk, its GUID, and a 32-bit cyclic redundancy check (CRC32) checksum that is used to verify the integrity of the GPT header. Each GUID partition entry begins with a partition type GUID. The 16-byte partition type GUID, which is similar to a System ID in the partition table of an MBR disk, identifies the type of data that the partition contains and identifies how the partition is used, for example if it is a basic disk or a dynamic disk. Note that each GUID partition entry has a backup copy. Dynamic disk GPT partition layouts looks similar to this basic disk example, but as stated previously have only one LDM partition entry rather than 1-n primary partitions as allowed on basic disks. There is also a hidden LDM database partition with a corresponding GUID partition entry for it.





< Windows Disk 2 | Win32 Programming Index Page | Windows Disk Index | Windows Disk 4 >